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ABSTRACT

The major problem addressed by this research is how to allow an autonomous vehicle

to dynamically recognize changes in its environment, to map its environment, and alter its

path to avoid obstacles while still reaching its goal point.

The approach taken was to modify existing sonar functions in previous work, to better

utilize sonars, and to perform many experiments to determine what data to expect from

sonars while the vehicle is in motion. By applying the linear square fitting algorithm, the

robot has the ability to map the objects within sensor range of an autonomous vehicle.

The results are that, given an initial and goal point, the robot can proceed on a directed

path, utilize its sonar sensor(s) used to detect obstacles, and when an obstacle is detected

have the capability to dynamically compute a parallel path and smoothly alter its motion to

the parallel path. The robot now has the capability to track the obstacle, and, once clear of

the obstacle smoothly alter its motion to a path that will reach its goal poinL The ability for

the robot to combine smooth motion with obstacle avoidance has now been successfully

programmed.
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I. INTRODUCTION

A. BACKGROUND

Obstacle recognition is a common application of sonars used in many different

applications. Motion control and path following for autonomous vehicles can be

accomplished in a variety of ways. Whether or not the vehicle is in a static or changing

world will drastically alter the path it will take. In previous research at the Naval

Postgraduate School, obstacles detected by sonars were addressed by Solomon Sherfey in

[Ref. 1] and resulted in an ability to use sonars that was not easily accomplished from a user

standpoint. Sonars are used to determine location, and to recognize obstacles to be avoided.

A high level language called MML (model bases mobile robot language) is the driving

force behind the robot Yamabico. Real testing of software development and algorithms can

be done on an autonomous vehicle. By restructiring the code and making it more modular,

this will make MML more portable with the ability to apply its functions to other vehicles.

B. OVERVIEW

Although Yamabico may have precise knowledge of its location in a given

environment, it is only capable of detecting the presence of unexpected obstacles in its path

by relying on its 12 sonars that can be operated at anytime. They have an accuracy of

approximately 1 centimeter, and are consistent in their results. Yamabico can move at a

speed up to 65 centimeters per second in a translational motion, forwards or backwards.

The sonars are low to the ground and will not pick up obstacles that are high, such as

overhangs, or low obstacles below 38 centimeters. If an obstacle is detected, Yamahico has

the ability to alter its path to avoid the obstacle, and once clear of the obstacle, return to its

original path. Once the obstacle is recognized, Yamabico should smoothly transition to an

alternative path and smoothly transition back to the original path once it can be done safely.

Hence, the fusion of an obstacle being recognized and then having motion functions



available to smoothly deviate from the original planned path are the basic premises on

which the sonar system for Yamabico has been designed and implemented.



H. PROBLEM STATEMENT

The problems we are addressing can be broken into two basic components.

1. The first is to construct a sonar function library, with a simple, transparent and

efficient user interface.

2. The second component is to use these functions for real time obstacle avoidance. The

sonar system can be used concurrently with the vehicle in motion, either translational or

rotational. The sonars can be used to determine where an obstacle is, and for a vehicle to

dynamically transition from its pre-planned path to another newly planned path in order to

maintain the safest path while avoiding obstacles.

A. SONAR FUNCTION LIBRARY

One of the problems in past sonar functions has been that they were logically incorrect

and unreliable. The C code was not written in ANSI C, so a lot of checking at compilation

for such things as type and parameter matching being two examples, was never being done.

A strong asset of ANSI C is that it's the next step towards C++, which then gives us the

benefit of object oriented programming with inheritance.

The first step in improving sonar functions is to trace key algorithms to ensure that they

are being properly implemented, and to ensure that all unnecessary code is removed. Over

time, adjustments have been made to different functions, with needless variables and

equations not being deleted. Later, more complex functionality, such as linear square

fitting, was reorganized.

The second step in improving sonar functions is to make them more modular. That is

to shorten the sonar code into smaller functions that are correct and easily understood.

Making a module small to perform one basic operation for each is one step towards making

the code more portable. By making the functions easily understood, the user should have

no problem implementing the functions, and testing them on an actual platform.
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B. OBSTACLE AVOIDANCE

Consider a vehicle traversing a hallway on a safest path trajectory, say the center of the

hallway. Along the way the vehicle encounters an obstacle in its path. In order to continue

on a safest path trajectory, the vehicle must change its linear path. This functionality is

possible with the linear fitting and some other basic capabilities.

The introduction of obstacle avoidance as a function that can be called when planning

the path of the vehict- is one way to give intelligence to the robot in navigating a path.

One simple way to do this is to (see Figure 1) detect the obstacle with a forward

looking sonar, shift to a parallel path, and then resume its original path once the side

detecting sonar detects no obstacle. This demonstrates the ability of a vehicle to

dynamically alter its path for a safer path, and resume its original path once the obstacle has

passed.

parallel path

original path

obstacle

Figure 1: Example of obstacle avoidance

Writing functions that allow the vehicle to intelligently avoid obstacles and reach its

goal as the world becomes more complex will be the approach taken. It is important to

ensure each function is sound in solving one problem, and that different functions can be

dynamically used as different situations arise.
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As a path becomes more complex, and the number of obstacles increases, additional

decision making becomes necessary. The challenge will be to cover as many different cases

as possible, and to dynamically path plan in a timely manner.



M. SONAR HARDWARE SYSTEM

A. HARDWARE SYSTEM

Yamabico's sonar hardware is extremely efficient because a dedicated sonar board

with a microprocessor controls the sonar sensors. Yamabico's main central processing unit

is interrupted only when data becomes available from the sonar array. The sonar system

provides user interface functions that control Yarnabico's array of sonar range finders. At

any point within a user's program, any of the 12 sonars may be enabled or disabled. This

allows the user to operate a given sonar only when necessary for a particular application.

When needed, the sonar system returns the latest reading of a specified sonar out of the

twelve. This system design is far better than the primitive one in which a user must wait 30

milliseconds after he/she issues a command. A user's program can also be forced to "busy

wait" until some sonar-based condition is satisfied. This feature is particularly valuable for

obstacle avoidance. For example, a user's program could be written to wait until the

forward looking sonar's range is less than distance d, then stop. A block diagram of the

sonar system is provided in Figure 2.

80 311

5 00,An 6

9 A 10

Figure 2: Yamabico sonars
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Figure 3 shows the current hardware configuration of Yamabico.
0

2 -- T/IR .0-4. C MM J
1�S Coard

4 -- T/R

7 >--r Board

• C> o, r pr CeCsora
9> -Board ______________

10 3 1

VME Motherard

Figure 3: Sonar Hardware Architecture

1. Sonar Grouping

In order to reduce sampling time the sonars are operated in logical groups of

four. The sonars of a logical group are all pulsed simultaneously and thus the sampling time

is reduced by a factor of four as compared to individual firing of the sonars. The sonars of

each logical group are oriented in such a way as to:

- prevent mutual interference

- provide a "look" in all four directions from each group

- present a similar aspect from each sonar during a rotational scan

Thus, logical group 0 consists of sonars 0, 2, 5 and 7 (see Figure 2), group 1

consists of sonars 1, 3, 4 and 6; group 2 consists of sonars 8, 9, 10 and 11; and group 3 is a

7



"virtual" group which consists of four permanent test values. The sonars of a group are

symmetric about the robot's axis of rotation.

In addition to being logically grouped, the sonars are also physically grouped

(see Figure 3). The physical grouping of the sonars is made to distribute the electrical load

over the driver boards evenly and thus minimize any electrical transients associated with

operation of the sonar. The physical grouping connects sonars 0, 2, 8 and I 1 to driver/

amplifier board 1; sonars 4, 5, 6 and 7 to board 2; and sonars 1, 3, 9 and 10 to board 3. The

reader will note that pairs of sonars from logical groups are assigned to physical groups, for

example, sonars 0 and 2 from logical group 0 are assigned to physical group (driver/

amplifier board) 1.

Initial design of the control circuitry was based on two primary parameters: (1)

a desired maximum range of 400 centimeter. and (2) a pulse width of 1 millisecond.

Assuming a speed of sound in air, at sea level, of 340 meters/second we may calculate a

round-trip time:

round trip time = 400 cm x 2 = 23.53 nsec (Eq 3. 1)34000 cm/see

This round trip time is the period during which a valid echo may be received and

is referred to as the receive gate. This interval is rounded up to 24 milliseconds and is

derived by division of the sonar system's 2 MHz clock to ensure that the receiver is not

falsely triggered by a direct path reception from it's adjacent transmitter, we opt to disable

the receiver until the transmit pulse is complete. This will have the disadvantage of setting

a minimum range equal to half the distance sound would travel in the time of a transmit

pulse.

minimum range = 34000 cm.sec. x I macc. x 0.5 = 17 cm. (Eq 3.2)

This minimum range lies approximately 9 centimeters outside the periphery of

the robot. In order to allow the measurement of objects up to the periphery of the robot, the

pulse width was decreased to 0.5 milliseconds thus reducing the minimum range to 8.5

centimeters.

8



In actual practice, the minimum range is set by firmware to 9.6 centimeters, the

additional distance being due to time allotted for switching and settling in the circuitry.

All sonars of a logical group are pulsed simultaneously. Which groups are fired

is determined by the value of the corresponding bit in the command register of the sonar

control board, which in turn is set by the user with an MML function (see Figure 3). Hence,

if bit 2 is set to 1 then group 2 sonars will be pulsed. If more than one group is selected to

be pulsed, the sonar control board will pulse the first group on the list, and when the data

from that pulse has been read from the fourth data register the sonar control board will

proceed to the next group and pulse it, and so on in round robin fashion. Groups with their

control bit set to 0 will not be pulsed. The sampling rate can thus be as high as 41 Hz with

only one group enabled (based on a 24 millisecond read gate as determined in Equation 3.2)

and will be halved for each additional group enabled. At a nominal robot speed of 30

centimeters per second. this sampling rate could provide an updated range within 0.75

centimeter of travel, exceeding our desired positional accuracy of I cent:". er. Of course,

real performance will be affected by any delay in reading the data registers due to other

demands on the central processor (processing the sonar data, controlling motion, etc.).

2. Range Finding

There are four 16 bit data registers on the sonar control board, one for each of

the four sonars in a logical group. When the transmit pulse is sent to the driver/amplifier

boards a counter is started which increments each of the data registers every 6

microseconds. This time period is equivalent to a range of 1.02 millimeter:

range = 340000 mm/sec x 6 microsec x 0.5 = 1.02 mm (Eq 3.3)

The incrementing of a particular data register continues until an echo is received

or the range gate times out. The first 12 bits of the data register are allotted for range

accumulation, thus allowing for a maximum range of 4.177 meters (4095 x 1.02 umm.). If

the range gate should time out before an echo is received, the high bit of the over ranged

sonar's data register is set to 1. This is the "over range" bit and is used to signal the ensuing

9



software that no echo was received. Bits 12, 13 and 14 of the data registm are not used.

When the ranging cycle is complete, the appropriate group number is written into bits 4 and

5 of the status register and the "ready" bit, bit 7 of the status register, is set to 1. The ready

bit is used as a flag when operating in the polled mode; i.e. without interrupts.

3. Interrupt Control

The sonar control board is actually a daughtercard which rides on a VME bus

mothercard. The mothercard carries address decoders, bus drivers and interrupt control

circuitry in the Bus Interface Module (BIM).

When the sonar has completed a ranging cycle an interrupt request is provided

to the BIM. The BIM's control register holds information which determines whether an

interrupt is to be generated or not, and if so which interrupt level is to be generated.

Presuming an interrupt is generated, when the correct acknowledgment returns on the

address lines the BIM's vector register provides the vector table entry where the central

processor may find the vector to the interrupt handler. The correct interrupt level, the

interrupt enable bit and interrupt vector are loaded to the BIM during software

initialization.

4. Data Transfer

Each of the data registers is individually addressed on the VME bus by a VME

short address, as is the status register. Transferral of the data is extremely straightforward.

The interrupt handler simply reads the correct register, masks out the unwanted bits and

writes the data to the stack. When the last data register is read, the sonar system resets the

data registers and commences a ranging cycle on the next sonar group in it's round robin.

The system will continue to operate autonomously until all the sonars are disabled.

10



IV. BASIC SONAR FUNCTIONS

A. DISTANCE

There are two functions available to return sonar values. One function, sonaro will

return the range from the sonar to the object it is getting the return from. If there is no return,

then a value of infinity is assigned, and for Yamabico this value is 999999. The infinity

value is used for trouble shooting purposes, to detect whether or not there are instances of

no return from objects at a distance of less than 4 meters. The second range function

available is globalo, and this will return the x,y coordinates of where the return was

detected in the world that the vehicle is in. This is useful in the vehicle making a map of its

world with obstacles in it. These functions can be found in Appendix A.

B. GLOBAL POSITION CALCULATIONS

By utilizing the compose function described by [Ref. 31 and seen in Figure 4, we can

determine the actual point in a 2D coordinate system. Let the following equations represent

q/anq2,

q M (xpy, Y, e1 )T (Eq 4.1)

q2 M (z2, Y2, 62) r (Eq 4.2)

The composition of these transformations is defined as

xi +x 2 coB 1 -y2uirnl

q 1 O q2 y7, +Z 2 3mel +y2wse

S+ e2 (F1q 4.3)



x2

Y2 TF2

T1

Figure 4: Compouition

This functionality is extremely usefully in dynamiAcally configuring new paths from your

original paths. You can dynamically define another path depending on your position and

the direction of your vehicle. For the sonar functions, it allows much more modularity to

the code. The code is reusable, since the only thing unique to Yamabico are the actual sonar

positions on the robot.

12



V. LINEAR FEATURE EXTRACTION

In addition to simple range and point position data, the sonar system recognizes the

linear features of an orthogonal world. To do so we must provide some method for

recognizing sets of data points which form the linear feature and a method for finding and

describing the line segment that best fits that set of data points. This is accomplished in

reverse fashion, i.e. we presume the data we are receiving belongs to such a set and

continuously modify a descriptive line segment to a best fit of the data using a least squares

fitting algorithm. This line segment continues to grow until the incoming data or certain

measures of the line segment indicate that the line segment should be ended and a new one

started. We use an implementation of least squares fitting described by [Ref. 1].

A. LEAST SQUARES FIrTING

Suppose we have collected n consecutive valid data points in a local coordinate

system, (pl,..., p.), where pi = (xi, y) for i = 1,...,n. We obtain the moments mjt of the set

of points

Mjk = 7xfy (0<J,k<2,adj+k<2) (Eq 5.1)

Notice that moo = n. The centroid C is given by

c. (Eq 5.2)

The secondary momets around the centroid are given by

ih2 (rn1o) (E 3
M 3o - (x,- (xi - DIM -- (Fq 5.3)

i1I

13



""- (res M (Eq 5.5)

We adopt the parametric representation (ra) of a line with constants r and CL If a point

p - (x,y) satisfies an equation

r = xcosa + ysina (-x/2 < a:5 x/2) (Eq 5.6)

then the point p is on a line L whose normal has an orientation a and whose distance from

the origin is r (Figure 5). This method has an advantage in expressing lines that are

perpendicular to the X axis. The point-slope method, where y = na + b, is incapable of

representing such a case (m = Ao, b is undefined).

L
y

p = (xi, yi)

residual

rX

x
Figure 5: Representation of a line L using r and a

The residual of point pi = (xi, y5) and the line L = (rcz) is xicosa + yisina - r. Therefore,

the sum of the squares of all residuals is

s , (r-xcosa-yisina)2  (Eq 5.7)
i-I!

The line which best fits the set of points is supposed to minimize S. Thus the optimum

line (r,a) must satisfy

14



---. 0S (Eq 5.8)

Thus,

dS

21 (r-xzcca-ysa) (Eq 5.9)
'-I

-2(ril - (i j;lcO6x- ( jyi)sina) (Eq 5.10)
S"i-l $-Il , "i-I "

= 2(rm-mlocsma-molsuna) (Eq 5.11)

=0

and

r a -l~cma+mbssina = pccma+psina (Eq 5.12)

where r may be negative. Substituting r in Equation (5.7) by Equation (5.12),

S = ((x-It) cOSU+ (y,-pL,)sika) 2  (Eq 5.13)

Finally,

Sm ((x -27) cosa+ (y5- i) sina) (- (x,-p ) sina+ (y4- y) cosa) (Eq 5.14)
i-I

2i( (y, _ t) 2 _ (Xi L~ 2 )hnacosa + 2i (xi - P.) (y1 - P,) (cos~a- uina)(Eq 5.15)
i-i i. i

- (Mo2 -M ) sin2a+2Mjjcos2a (Eq 5.16)

=0

Therefore

amam (2Mnl/(M2- M20))a u 2 (Eq 5.17)

Equation (5.12) and Equation (5.17) are the solutions for the line paraneters

generated by a least squares fit.

15



B. FINDING ENDPOINTS

The residual of a pointpi - (xi, y1) is

(L, (,-X,) coa + (P),- y,) sa (Eq 5.18)

Therefore, the projection, p, of the point pi onto the major axis is

P-i W (x,+ iccsa, Yj +sina) (Eq 5.19)

We will use p', and p. as estimates of the endpoints of the line segment L obtained

from the set p of data points.

C. RESIDUAL TESTING

We wish to do some pre-filtering of the data in order to remove points from the data

stream which are clearly not colinear with the existing points of set p. In this way we can

often detect the end of a line segment before having to perform the considerable

computations necessary to include it in the line. If the point satisfies

8, <nmax (axCl, C2) (Eq 5.20)

where C1 and C2 are positive constants (typically, Cl - 0.02 and C2 = 5.0) then the point

can be included in the current line segment. C2 at 5.0 allows for more residual at a distance

greater than 250 centimeters, up to 8 centimeters at a distance of 4 meters.

D. BEGINNING LINE SEGMENTS

First, the sonar returns must fall within their physical constraints. For Yamabico,

acceptable return values fall between 9.3 centimeters and 409 centimeters. If a sonar return

is not within this range, a segment will be generated if there have been at least 10 previous

returns that met all requirements of the least square fitting to qualify as a segment.

Secondly, if it is the first return, you simply store it as the starting point and proceed

with the next return.

With the line segment established, collection and testing of the additional data points

can proceed. If the data point passes the residual testing, the moments and test values for

the line are calculated including the new point. Should that test pass, the line segment
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parW1a VS (endpoints, length, etc.) are updated and the system proceeds to gather a new

data point

E. ENDING LINE SEGMENTS

Ther are three ways in which a line segment is ended. It may be ended by the failure

of data points to pass the residual testing, explicitly ended by the sonar being disabled, or

by the sonar return being outside the acceptable range.
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VI. MML USER INTERFACE

A. GLOBAL CALCULATION

The compose function is implemented in a sonar function called calculateSglobal. It

applies the compose function twice. The first time the compose function is used to

detwme the actual position of the sonar in the world being navigated by the vehicle, as

seen in Figure 6. In this example Yamabico is at coordinates (80,40), in the "world

coordinates". The sonars position on the robot is (9.5, -19.75). By applying the compose

YO

40 <

80

Figure 6: Example of first compose
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function,

xi ÷ x2aose -Y28ke 11

q oq 2 m Yj+x2sinOl+Y2cwBJ
61 +02

we determine the position of the sonar in "world coordinates'. In this case it would be:

world sonar x coordinate = 100.68 = 80 + 9.5*cos(x/4) - (-l9.75*sin(w/4))

world sonar y coordinate = 32.74 = 40 + 9.5*sin(X/4) + (-l9.75*cos(X/4))

world sonar theta = -W/4 = x/4 + -(zi2).

The second time compose is applied it determines where the sonar return is in the world

being navigated by the robot, as in Figure 7.

In this case we apply the compose function and the results are:

sonar x coordinate from robot = 171.42 = 100.68 + 35*cos(-x/4) - 0*sin(-rK4)

sonar y coordinate from robot = -37.94 = 32.74 + 35*sin(-x/4) + O*cos(-X/4)

which gives us the point in Figure 8.

By knowing where each sonar is on the vehicle (see Figure 9 and Table 1) and knowing

where the vehicles position is, we can consistently determine where the object being

detected is in relation to the world that Yamabico is in. This is needed so that a vehicle can

dynamically map out the world.
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Figure 7: Example of Compose with sonar return
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YO

0,
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xo

80

Figure 8: Result of compose on example
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Figure 9: Sonar positions on Yamabico
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Table 1: SONAR POSrrIONS

Sonar x y 0

0 18 cm 9.5 cm 0.0

I - 18cm 9.5cm

2 - 18 cm -9.5 cm X

3 18 cm -9.5 cm 0.0

4 9.5 cm 19.75 cmn Y42

5 -9.5 cm 19.75 cm x/2

6 -9.5 cm -19.75 cm -V2

7 9.5 cm -19.75 cm -x/2

8 -15 cm 19.75 cm 3/4 x

9 -14.5 cm -19.75 cm -3/4 x

10 15.5 cm -19.75 cm -xr/4

11 16 cm 19.75cm :14

B. SONAR FUNCTIONS

Sonar functions are found in sonarcard.c, sonarmath.c, sonario.c, sonarsys.c, and

sonarlog.c, which are part of Yamabico's MML (model based mobile robot language), the

name for the entire set of code for Yamabcio. The following functions and all sonar code

can be found in Appendix A. The following are those functions which are available for use

in the user.c and a brief description.

1. Enable Sonar

Syntax: void enable_linear.fitting(n)

int n;

Description:
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The user calls this function passing in the sonar that is to be enabled. On

Yamabico there are 12 available sonars. Each sonar should be enabled individually.

2. Disable Sonar

Syntax: void disablesonar(n)

int n;

Description:

The user calls this function passing in the sonar that is to be disabled. On

Yamabico there are 12 available sonars. Each sonar should be enabled individually.

3. Get Sonar Returns

Syntax: double sonar(n)

int n;

Description:

The user calls this function and passes in the sonar number that range data is

wanted from. If no echo is received, then an INFINITY(I.0e6) is returned. If the distance

is less than 10 cm, then a 0 is returned. If the sonar return is between 9 cm to 409 cm, then

that floating point number will be returned in centimeters.

4. Get Global Sonar Returns

Syntax: posit global(n)

int n;

Description:

The user cIls this function and passes in the sonar number that global range data

is wanted from. The function will return a structure of type posit, which contains gx and gy,

the global x and y coordinates.
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5. Enable Linear Fitting

Syntax: void enablejlinearjfitting(n)

int n:

Description:

The user calls this function and passes in the sonar number, so that linear fitting

is applied to sonar returns. This will enable the robot to detemine whether sonar returns

are walls, or some type of linear surface.

6. Disable Linear Fitting

Syntax: void disable_linear fitting(n)

int n;

Description:

The user calls this function and passes in the sonar that linear fitting is to be

disabled on.

7. Set Parameters In Linear Square Fitting

Syntax: void setsonar.parameters(cl, c2)

float c ,c2;

Description:

Allows the user to adjust constants which control the linear fitting algorithm. CI

is a multiplier to allow more leniency for greater sonar ranges, and C2 will adjust the

tolerance allowed for sonar ranges being off the linear line being collected. Both are used

to determine if an individual data point is usable for the algorithm. The default values are

initialized to 0.02 and 5.0 respectively. For more information on Cl and C2 refer to Chapter

V.C of this thesis.

8. Enable Data Logging

Syntax:
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void enablejdalaaoging(nAftpefilenumber)

int n,filetypefilenumber;

Description:

The user calls this function and passes in the sonar, the type of file data to be

collected, and which file array (0, 1, 2, or 3) to collect the data in. There are three types of

file data that can be collected. The first is raw data, the second is global data, and the third

is segment data.

9. Disable Data Logging

Syntax: void disabledata.logging(n.filetype)

int n, filetype

Description:

The user calls this function and passes in the sonar, the type of file data to

collected, and which file array (0, 1, 2, or 3).The type of file data that is to cease being

collected is designated, either raw data, global data, or segment data.

10. Set Logging Interval

Syntax: void set_loginterval(nd)

int n, d;

Description:

The user calls this function passing an integer designating how often the sonar

data being collected should be written to the file collecting the data. The default value is

13, which for a speed of 30 centimeters per second and sonar sampling time of 25

milliseconds. would record a data point approximately every 10 cm. To collect all sonar

data you pass in 1, so that every sonar return is recorded.

11. Transfer Raw Data To Host

Syntax: void xfer.raw-tojhost(filenumber,filename)

int filenumber, filename;
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Description:

The user calls this function and passes in the file number (0, 1, 2, or 3) and the

name of the file that is to be created at the workstation to contain the raw sonar data

collected.

12. Transfer Global Data To Host

Syntax: void xfer..global-to-host(filenumberXfilenarne)

int filenumber, filename;

Description:

The user calls this function and passes in the file number (0, 1, 2, or 3) and the

name of the file that is to be created at the workstation to contain the global sonar data

collected.

13. Transfer Segment Data To Host

Syntax: void xfersegmenttojhost(filenumber, filename)

int filenumber, filename;

Description:

The user calls this function and passes in the file number (0, 1, 2, or 3) and the

name of the file that is to be created at the workstation to contain the segment sonar data

collected.

C. DATA LOGGING PROCEDURE

After Yamabico has completed its mission, recorded sonar data can be downloaded and

checked to ensure that the hardware is performing optimally. The data that can be logged

includes global sonar data, raw sonar data, segment sonar data, and the motion trace data

of the robot Once the robot has stopped, the data designated to be logged in user.c can now

be downloaded. A message on the powerbook will instruct the user to connect the phone

cable to the roboL Once the phone line is connected, the user must hit the space bar, then

the character g, and the space bar once more. The data will then be downloaded to the
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workstation. Once the download is completed, a bell sound will be heard from the

powerbook on the robot. This is required for each type of data being logged.
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VIL SONAR CHARACTERISTICS EXPERIMENTAL RESULTS

To be able to successfully use sonars in path navigation and obstacle avoidance, it is

necessary to understand what data you can expect in different situations using sonars. This

way you can determine in which cases you will be able to successfully avoid obstacles, and

in which cases you will be unable to determine a safe path with only input from the sonars.

A. CASE I

The robot is moving using its right sonar in a translational scan as in Figure 10. You

would expect to get very accurate data and to be able to recognize the wall. As Figure 11

and Figure 12 show, this is the case. As expected, the robot can determine that there is a

wall, and sonar returns have an accuracy within one centimeter.

Wall

Sonarl

Figure 10: Cane 1
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B. CASE2

The robot is moving using its sonar in a translational scan and transfers to a line 90

degrees from its starting line at a comer as in Figure 13.

Robot roving forward in trailational scan

Sonar[ > Wall

Figure 13: Case 2

The results can be found in Figure 14 and Figure 15. The sonar can accurately

detect both walls, with a 45 degree segment produced for the corner.

31



200
'global .dat'

1oc..dk• teat

150

100

1so

0

-50

-100
0 so 100 150 200 250

Figure 14: Path and sonar global returns
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Figure 15: Path and sonar segment
data
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C. CASE 3

The third case is the robot in a translational scan of a corner and the actual way it

perceives it surroundings as in Figure 16. You would expect the results would not

accurately reflect the comer due to the amount of reflection, and the poor angle to get

returns off the wall. This is the case with the snnar not detecting the walls close to the point

where they meet at a 90 degree angle, as shown in Figure 17 and Figure 18.

Sonar

I Wall
Figure 16: Case 3
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Figure 17: Path and global sonar returns
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Figure 18: Path, corner, and sonar
segment data
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D. CASE 4

The fourth case is the robot in a rotational scan as in Figure 19 with a horizontal wall.

With this type of obstacle you would expect that the detection rate would be good. Tests

results have shown that the robot is able to recognize the wall using the linear square fitting

algorithm with line segments, with the robot rotating, as seen in Figure 20 and Figure 21.

Wall

[I7> onar

Figure 19: Case 4
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36



E. CASE 5

The fifth case, seen in Figure 22 is the robot in a rotational scan with two walls forming

a 90 degree angle. The results are similar to those in case 2, with a translational scan. The

results can be seen in Figure 23 and Figure 24

Wall

Sonar Enabled

Rotational Scan

Figure 22: Case 5
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F. CASE 6

The sixth case, seen in Figure 25 is a rotational scan with 2 walls forming a pointL In

this case there were no sonar returns in the testing that was done, as would be expected due

the poor angle of return from the walls back to the sonar.

Wall
Seaa - Rotatomal Sam

Sonar

Figure 2S: Case 6

G. CASE 7

In this case, seen in Figure 26 we have a circular object, and for testing purposes a

plastic can with a 55 centimeter diameter and height of 70 centimeters was used. The

purpose was to test how difficult it would be to recognize a circular object. In a translational

scan, the circular object was very accurately detected. The global sonar returns in Figure

27 show the curvature of the object. When testing for a segment, we are able to detect a line

segment from the obstacle, which will assure the ability to map the obstacle that is there.
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Figure 27: Sonar global and trace
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Figre 28: Sonar aegunent and trace

H. CASE S

In this case, seen in Figure 29 we have a circular object, and for testing purposes a

plastic can with a 55 centimer diameter and height of 70 centimeters was used. The

purpose was to test how difficult it would be to recognize a circular object in a rotational

scan. The results are shown in Figure 30 and Figure 31. The obstacle is detected but not as

accurately as in the tmslational scan.
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Figure 30: Sonar global and trace
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VIH. OBSTACLE AVOIDANCE UTILIZING SONARS

A. OBSTACLE AVOIDANCE

Given that you have a starting point, and a finishing point, you should be able to reach

your goal even if there is an obstacle in your path. We will start out with simple cases that

are easily resolved by the vehicle. The starting point and goal point will be on one line, with

the robot transiting to a parallel line when an obstacle is detected. When the compose

function previously discussed is used, it is possible to designate a parallel line to the left or

the right of Yamabico's current path, with the user either designating the distance between

the two paths or using a side sonar to determine the distance of the parallel path. Using the

compose function to compute a parallel path allows Yamabico to dynamically alter its path.

1. Detecting Obstacle With No Depth

This is the simplest case. There is a starting point and a goal point on a linear

line. There is a small obstacle. There is no depth to the obstacle, and once the object is

detected, the vehicle will shift to a parallel line to avoid the obstacle, and then shift back to

its original path (see figure 32). The general assumptions made in this case are that there is

room for the vehicle to maneuver to a parallel line, that there is at most one obstacle and

that there is no depth to the obstacle. For this case only one forward looking sonar will be

necessary to detect the obstacle.

To detect a small obstacle, the vehicle moves forward with its forward sonar. If

an obstacle is detected, the vehicle will maneuver to a parallel line with a specified distance

from the original line, left or right of the obstacle. Which way the vehicle turns to avoid the

obstacle is left to the user. The user can use side sonars to determine which side will give

the robot greater freedom to maneuver. Or for example he can have a heuristic that anytime

an obstacle is detected by a forward sonar that he will shift to a parallel line to the right.

The distance to shift can be a simple heuristic, for example shift to a parallel line one meter
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Porig=(xi. Yi. O, IC) obstacle

4b10

PparjIg=(X2, Y2, O, ICI)

Figure 32: Traversal around an Obstade

distance to the original path, or it can be determined using side sonars, for example taking

a range, subtracting 50 centimeters from it and then shift that distance. A sample pseudo-

code program for obstacle avoidance is as follows:

define_line(xi, yl, 01, Ki, &p])

follow_line(&pJ)

iftsonardetects-forward obstacle) then

define jarallel_line(x2 , Y2, 01, Ki, &p2)

shift tofparallel_line(&p2)

su'fttoorigline(x1 , yl, 01, il, &p])

endif

Figure 33 shows that the robot has tracked a line Y = 150 with a goal configuration

(1650,150) and 0 degree orientation. The robot opens its front sonar while it is tracking on

its current path, as soon as the distance from an obstacle is less than 100 centimeters, it

transitions to an avoidance path which is line Y = 50. When the robot passes the obstacle,

it returns to its original path after traveling past the obstacle for two meters, and stops at its

final goal configuration. This can be done with a minimal number of commands. The user.c

file used to direct the robot's mission can be found in Appendix B.
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Figure 33: Obstacle avoidance results

2. Detecting Obstacle With Depth

T'he second case will assume that the obstacle will have depth, and that it is thin

enough to maneuver around. There is a start and a finish on a linear line. The depth of the

obstacle is unknown, so the vehicle will need to determine that it is safe to resume its

original path once the obstacle is clear (see figure 34). The general assumptions made in

this case are that there is room for it to maneuver to a parallel line, and there is at most one

obstacle. For this case, one forward looking sonar, and side looking sonars will be

necessary to detect the obstacle and to detect that it is clear of the obstacle.

To do this, the vehicle is set in motion with a forward sonar and side sonars on.

Once an obstacle is detected, the vehicle will shift to a parallel line on its left or right as

long as it is safe to do so. If there is an obstacle detected with the side sonars, the vehicle

will have to determine whether or not there is enough room to clear the forward obstacle

and side obstacle. In our case with Yamabico, perhaps we will maneuver to a line one meter
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from the obstacle detected. The robot should maneuver to the parallel line with the most

room. If there is a. obstacle detected within some cut off range on both sides, the vehicle

will stop and wait for further instructions.

Pwig=(xi, Y0j, 0 K1 ) obstacle

parallel(X2. Y2, 01, K1 )

Figure 34: Traversal around an Obstacle with
Depth

Once the vehicle transitions to the parallel line, it will detect the obstacle it has

shifted lines to avoid. Once the vehicle sonar no longer detects the obstacle, it will shift

back to its original line and continue towards its goal point. The pseudo-code program for

obstacle avoidance is as follows:

defineline(xi, yl, 0O, ic1, &pl)

follow line(&pl)

iflsonar-detects_forwardobstacle) then

define-parallel-line(x2, Y2, 0(, icl, &p2)

shift.to_parallel_line(&p2)

while(sonar-detectsobstacle_at_side)

remain on parallel-line

endwhile

shifttoorig_line(xn, yl, 01, 1c1, &pl)

endif
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Yamabico can use sonar as its environmental sensors to execute this obstacle avoidance

missions. Figure 35 shows that the robot has tracked a line Y = 0 with a goal configuration

(500,0) and 0 degree orientation. The robot opens its front sonar while it is tracking on its

current path, as soon as the distance from an obstacle is less than 100 centimeters, it

transitions to an avoidance path which is line Y = -100 and opens the side sonar to detect

the obstacle until it passes the obstacle. When the robot passes the obstacle, it returns to its

original path and stops at its final goal configuration. This can be done with a minimal

number of commands. The user.c file used to direct the robot's mission can be found in

Appendix B.
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Figure 35: Obstacle avoidance results
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IX. CONCLUSION

A. RESULTS

Yamabico's sonar function library for the sonar system is now complete. It accurately

applies all algorithms and the results are very accurate. The linear square fitting algorithm

is accurately applied to sonar data returned from walls to build line segments that will

reflect the wall. The sonars now use the compose function to compute the global position

of sonar returns. The user can employ a select number of functions to utilize the sonars in

obstacle avoidance.

Basic sonar characteristics taken by translational scanning and rotational scanning

showed very reasonable results for the sonars. The experiments taken and results indicate

that there is a high degree of accuracy using the sonars while the robot is moving.

Simple obstacle avoidance is a success. The motion system and sonar system

coordination is a success. Testing has shown that the motion functions and sonar functions

can be jointly used to successfully detect an obstacle, and dynamically alter its path to avoid

the obstacle. The coordination is perfect between the sonar and motion systems.

B. RECOMENDATIONS

Some of the 12 sonars have been upgraded and hence are more accurate than others.

The front four sonars are the most recently replaced sensors. The remaining sonars need

hardware upgrading, and testing should be done to see ensure sonars are working optimally.

For better and more complex avoidance, the use of a parabola is needed in the

locomotion functionality. This will improve the transition from one path to another path,

and allow more complex motion when avoiding an obstacle. Follow on work needs to

ensure that the motion and sonar systems continue to work together.
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APPENDIX

This appendix contains the C code for all sonar functions and for the user files that

generated the results found in this thesis.

A. SONAR CODE

/,
Author Patrick Byrne
Date :22 February 1994
File : sonarcard.h
Description : Provides extern declarations for functions in sonarcard.c
,/
extern void enablejinterruptoperationO;
extern void disableinterruptoperationO;
extern void enablelinear-jittingo;
extern void disable_"lnear.fitting0;
extern void enable-sonaro;
extern void disable_sonarO;

extern void servesonarO;
extern double waitsonarO;
extern void reset_momentso;

* Author :Patrick Byrne
Date :22 February 1994

* File
* sonarcard.c
* Description : Provides the following functions for the
* Sonar Interface card in sonarcard.c:
* void enableinterrupLoperationo; void disableinterruptoperationo; void
* enable-jinear.fittingo; void disablejinear.fittingo; void
* enablesonar0; void disablesonarO; void serve_sonaro; double
* wait.sonarO; void resetmomentsO; void wait-untilO;

#include "mml.h"
#ifdef SIM
#include "/n/gemini/work2/yamabico/mml/Sim/spatial.h"
#endif
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* Procedure: enablesonar(n)
* Description: enables the sonar group

* that contains sonar n, which causes all the sonars in that group to
* echo-range and write data to the data registers on the sonar
* control board. Marks the n'th position of the enabledsonars array
* to track which sonars are enabled.

void
enable-sonar(n)

int n;(

#ifndef SIM
int i;

i = imaskoffO;
#endif

enabledsonars[n] = 1;
switch (n) {
case 0:
case 2:
case 5:
case 7:

#ifndef SIM
enabled = enabled I OxO1;

#else
sonar..group[0] = ON;

#endif
break;

case 1:
case 3:
case 4:
case 6:

#ifndef SIM
enabled = enabled I 0x02;

#else
sonar.group[1] = ON;

#endif
break;

case 8:
case 9:
case 10:

51



case 11:
#ifndef SIM

enabled - enabled I 0x04;
#else

sonar..group[2] - ON;
#endif

break;

case 12:
case 13:
case 14:
case 15:

enabled = enabled I 0x08;
break;

I
#ifndef SNM

*commanddptr - enabled;

imaskon(i);
#endif
}

* Procedure: disablesonar(n)
* Description: removes the sonar n
* from the enabledsonars list. If sonar n is the only enabled sonar
* from it's group, then the group is disabled as well and will stop
* echo ranging. This has benefit of shortening the ping interval for
* groups that remain enabled.

void
disable.sonar(n)

int n;
{

int i, c;
#ifndef SIM

i = imaskoffO;
enabled_sonars[n] =0;

#endif
switch (n) {
case 0:
case 2:
case 5:
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case 7:
c - enabledsonars[0 + enabled-sonas[21 +

enabledLsonarsf5] + enabled&sonars71;
if (c - 0)

#ifndef SIM
enabled = enabled & Oxfe;

#else
sonar.group[0] = OFF;

#endif
break;

case 1:
case 3:
case 4:
case 6:

c = enabledsonars[lJ + enabledcsonars[3] +
enabledcsonars[41 + enabled.sonars[6];

if (c -- 0)
#ifndef SIM

enabled = enabled & Oxfd;
#else

sonar-jroup[1] = OFF;
#endif

break-
case 8:
case 9:
case 10:
case 11:

c = enablcd-sonars[81 + enabled.sonars[9] +
enabledcsonars[ 101 + enabled-sonars[ 11];

if (c =0)
#ifndef SIM

enabled = enabled & Oxfb;
#else

sonargroup[2] = OFF;
#endif

break;
case 12:
case 13:
case 14:
case 15:

c = enabled_.onars[ 12] + enabledsonars[ 13] +
enabled-sonars[14] + enabledsonars[151;

if (c =• 0)
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#ifndef SIM
enabled - enabled & Oxf?;

#else
sonar.group[3J - OFF;

#endif
break;

)
#ifndef SNM

*commandptr - enabled;
imaskon(i);

#endif)

"* Procedure: waiLsonar(n)
"* Description: waits in a loop until new data is available for
* sonar n.
**** ***************************************************************

double
wait-sonar(n)

int n;
4

sonar-table[n].update = 0,
while (sonar-table[n].update =0);
return sonarjable[n].d;

"* Procedure: enablejinear-fitting(n)
"* Description: causes the background system to gather data points
"* from sonar n and form them into line segments as governed by
"* the linear fitting algorithm. Increments servicejflag.

void
enablejlinearfitting(n)

int n;

sonar_table[nl.fitting = 1;
sonar-table[nJ.global = 1;
++service-flag;
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/* Procedure: disablejlinear-fitting(n)
* Description: causes background system to cease forming line
* segments for sonar n.
* Decrements the serviceflag. Will also disable the calculation of
* global coordinates for that sonar if data logging of global data is
* not enabled.

void
disablelinearfitting(n)

int n;
{

generate-segment(n);
sonar-table[n].itting =0
if (sonar-table[n].filetype[] -I 0)

sonartable[nJ.global =0,
--servicecflag;

"* Procedure: enableinterrupt-operatinnO
"* Description: places sonar
"* control board in interupt driven mode.

void
enableinterruptoperationO
4

*BIM..ptr = *BIM..ptr I 1xl0;

"* Procedure: disable-interrupt-operationo Description: stops interrupt

"* generation by the sonar control board. A flag is set in the status
"* register when data is ready, and it is the user's responsibility to poll
"* the sonar system for the flag.

void
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disable..ntemn••toperationO
(

*BIMptr *BIMtptr & Oxef;}

#ifndef SIM

* Procedure: serve-sonar(x,y,t~ovfl,dataldata2,data3,data4,group)
* Description: this procedure is the "central command" for the
* control of all sonar related functions It is linked with the
* ihsonar routine and loads sonar data to the sonar-table from
* there. It then examines the various control flags in the
* sonartable to detmnine which activities the user wishes to take
* place, and calls the appropriate functions. This procedure is
* invoked approximately every thirty milliseconds by an interrupt
* from the sonar control board.

void
serve-sonar(x, y, t, ovfl, data4, data3, data2, datal, group)

double xt y, t
int ovfl, data4, data3, data2, datal, group;

[
int n;

int i;
int data[41;
int ovflmask = 8;

data[O] = datal;
data[ 1] = data2;
data[2] = data3;
data[3] = data4;

for (i = 0; i < 4; i++, ovflmask /= 2) {
n = grouplarrayfgroup][i,;
if (ovfl-mask & ovfl)(

sonar-table[n].d = INFINrTY;

else {
sonar-table[n].d = (double) data[i] 10.0;
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sonar_tabl-ln.x w x;
sonartable[nJ.y - y;
sonarabe[n.t -= t;
sonar_table[n.update - 1;

if (service-flag !- 0) (
for (i 0; i < 16; i++) I

if (sonar-able[il.update - 1) 1
if (sonar-able[iJ.global = 1)

calculate-Slobal(i);
if (sonar-able[i].fitting - 1)

linear-fitting(i);
if (sonar-table[i].filetype[O] -- 1)

log.data(i 1, sonar-table[i].filenumber[O], 0);
if (sonar-table[iJ.filetype[l] -= 1)

log-data(i, 2, sonarjable[i].filenumber[l1, 0);
}
sonar-table[iJ.update = 0;

}
}

#else

/

Procedure: servesonar(w, group)

Description: this procedure is the Simulator "central command" for the
control of all sonar related functions. It then examines the various
sonartable to determine which activities the user wishes to
control flags in the take place, and calls the appropriate functions.
This procedure is invoked every third ping.

void
servesonar(w, group)

World *w;
int group;

#ifdef ijj
Linesegment sonar-line;
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Line-segment wall;
Point p, q, pl, ql;
Polygon *current..poly;
Vertex *current-vertex;
int i;
int j;
int k;
int n;
double sonar-linethdeta;,
double wallj.heta
double sonar-theta;

/* for each sonar in the group being served *
for (i 0 ; i < 4; i++) I

n = group-array~group][i];

/* save the robot posture *I
sonar-table[n].x = vehicle~x;
sonar-table[n].y = vehicle.y;
sonar-table[n].t = vehicle~t;
if ((sonar..grup[group]) && (enabled~sonars[n])) I

*printf("%s%dW"," Sonar group firing => ", group);

sonar-table~n].d = INFINIT;

/* define the sonar beam */
p.x - vehicle-x + (cos(vehicle-t + sonarý.tabletn].phi)*

sonar table[n] .offset);
p.y = vehicle.y + (sin(vehicle.t + sonar-table[n].phi)*

sonar table[n] .offset);
q.x = p~x + (cos(vehicle.t + sonar-table[hi axis) *410.0);
q.y -- p.y + (sin(vehicle.t + sonar_table[n].axis) *410.0);
sonarjline.pl =f p;
sonarjline.p2 =f q;
sonar-line-theta, =f orientation(p, q);

current-poly =f w->poly-list;
for (k =f 1; k <ffi w->degree; k++){

current-vertx =f current-poly->vertexlHst;
for (i -f 0; j < current-.poly->degree; j++){

pl fI= curr-yn..ertx->point;
ql fI= cufrent-vertex->next->point;
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wall.pl - p1;
wall.p2 = ql;
wall_theta = orientation(p 1, q 1);
sonar-theta = fabs(normalize(walljtheta

sonarjline-theta));
if ((segment-crossing-test(&wall, &sonar-line) -

1)&&
(sonartheta < (HPI + 0.26)) && (sonar-heta >

(HPI - 0.26)))
/,
"* wall and sonar beam must
" intersect at 90 +- 15
"* degrees
*/
4
if (walltheta =-'0.0 II walltheta - PI)
if (sonar_table[n].d > fabs((p.y pl.y)

sin(sonar_theta))) f
sonar-table[n].d = fabs((p.y pl.y)

sin(sonar-theta));
sonarjable[n].update = 1;
}
};
if (walltheta= -HPI If wall_theta =HPI){
if (sonar_table[n].d > fabs((p.x - pl.x)

sin(sonarz.theta))) 4
sonartable[n].d = fabs((p.x pl.x)

sin(sonar-heta));
sonar..table[hn.update = 1; W
};
}
current_vertex = current_vertex->next;
/* end for each vertex loop*/

S '/* end for each polygon loop */
} /* end if sonar is enabled test */

} /* end outer for each sonar in group loop */
/,
"* printf("%s%d%s%2.21in",Sonar ", n," Range is => ",

"* sonar-table[n].d);
,/

if (service-flag != 0)
for (i = 0; i < 16; i++) 4
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if (sonar able[iJ.updae - 1) 1
if (sonarjable[i].globl - 1)Waculat..gtobal(i);
if (sonarjable[i].fiaing - 1)

linearfiuing(i);
if (sonarjable[iJ.filctype[O] - 1)

logdata(i 1, sonarmable[iJ.filenunmbr[O], 0);
if (sonarjable[iJ.ffletype[l] - 1)

log.data(i, 2, sonarjable[i].filenumbcrf I, 0);
/* end if */

sonartablefi].update = O;
/* end for each sonar updated*/

} /* end serve-sonar /
#endif
#endif
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/*declaration of functions and return values*/
/*sonamutli.h
extern double sonaro;
extern void linear_fittingO;
extern posit global(;
extern LINESEG *getsegmentO;
extemn void calculate.globalO;
extem void add_to_.sgmentO;
extem void generatesegmentO;
extern LINESEG *getcwrentsegmentO;
extemn LINESEG *end-segment(;
extem void initializesonarO;

/*sonarmathc *
#include "mml.h"

void
initialize-sonarO
4

int i, k;

/* initialize sonar_table and segment_data */

for (i = 0; i < 16; i++) I
sonartable[i].global = 0;
sonartable[i].fitting = 0;
sonartable[i].filetype[O] = 0;
sonartable[i].f'letype[ 1] = 0;
sonar_table[i].filetype[2J = 0;
sonartable[i].update = 0;
sonar-table[i].d = 0.0;
sonartable(i].x = 0.0;
sonartable[iJ.y = 0.0;
sonar-table[i].t = 0.0;

segment-data[i].alpha = 0.0;
segment_data[i].r - 0.0;
segment-datafi].startx = 0.0;
segment-data[i].starty = 0.0;
segment-data[i].endx = 0.0;
segment-data[i].endy = 0.0;
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enabled_sonars[i] = 0;

segment_data[i].n = 0;

/* set up compensation for sonar position */

sonar_table[O].robjt = 0.0;
sonar_table[1].robjt = 3.142;
sonar_table[2].rob-t = 3.142;
sonarjtable[3].rob-t = 0.0;
sonar_table[4].robtj = 1.57 1;
sonar_table[5J.robt = 1.57 1;
sonar_table[6].rob-t = - 1.57 1;
sonar_table[7].robjt = -1.57 1;
sonar_table[8J.robjt = 2.356;
sonar_table[9].robjt = -2.356;
sonar_table[10].robjt = -0.785;
sonar_table[ 11 ].rob-t = 0.785;
sonar_table[12J.robjt = 0.0;
sonar_table[13].rob.t = 1.5708;
sonar_table[Il4].robjt = 4.7124;
sonar_tablef 15].rob-t = 0.0;

sonar_table[O].rob..x = 18.0;
sonar_table[ 1 J.rob.x = -18.0;
sonar_table[2].rob.x = -18.0;
sonar_table[3].rob.x = 18.0;
sonar_table[4].rob&x = 9.5;
sonar_table[5].rob.x = -9.5;
sonar_table[6].rob.x = -9.5;
sonar_table[7].robjx = 9.5;
sonar_table[8J.rob.x = -15.0;
sonar_table[9J.rob.x = -14.5;
sonar_table[ 10].rob.x = 15.5;
sonar_table[ 1 ].rob.x = 16.0;
sonar_table[ 12].rob.x = 0.0;
sonar_table[ 131.rob.x = 1.5708;
sonar_table[14].rob.x = 4.7124;
sonar_table[ 15].rob.x - 0.0;

sonar_table[O].rob.y = 9.5;
sonar_table[ I ].rob..y = 9.5;
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sonar_table[2].rob_.y - -9.5;
sonar table[3].rob..y = -9.5;
sonar~jable[4].rob..y = 19.75;
sonar_table[5].rob..y = 19.75;
sonar_table[6].rob..y = -19.75;
sonar-table[7].rob.y = -19.75;
sonartable[8].rob_.y = 19.75;
sonar_table[9].rob_.y = -19.75;
sonar_table[1O].roby = -19.75;
sonar_table[ 1 l].rob.y = 19.75;
sonarable[12].rob..y = 0.0;
sonar_table[13].rob..y = 21.5;
sonartable[ 141.rob.y = 21.5;
sonarjtable[15].rob-y = 0.0;

group-array[O][O] = 0;
grouparray[OJ[1J = 5;
group-walay[OJ[2] = 2;
group-array[0J[3] = 7;
group-ary[l][O] = 3;
group-afray[I][1] = 4;
group-array[1][2] = 1;
group.array[ 11 [31 = 6;
group-array[2J[0] = 10;
group-waray[2][1] = 11;
groupmarray[2][2] = 8;
groupwarray[2][3] = 9;
groupmarray[3][0] = 12;
group.array[3][1] = 13;
groupwarray[3][2] = 14;
groupmarray[3][3] = 15;

service-flag = 0;
Cl = 0.02;
C2 = 5.0;

}

* Procedure: sonar(n)
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* Description: returns the distance (in
* centimeters) sensed by the nth ultrasonic sensor. If no echo is
* received, then INFINITY(l.0e6) is returned. If the distance is less than 10
* cm, then a 0 is returned.

double
sonar(n)

int n;
{

return sonarjtable[nh.d;I

* Procedure: global(n)
* Description: returns a structure of type
* posit containing the global x and y coordinates of the position of
* the last sonar return.

posit global (n)
int n;

posit answer,

if (sonar._table[n].global == 0)
calculate_global(n);

answer.gx = sonar_table[n].gx;
answer.gy = sonartable[n].gy;
return answer,

"* Procedure: get.segment(n)
"* Description: returns a pointer to the
"* oldest segment on the linked list of segments for sonar n; i.e. the
"* record at the head of the linked list. It is destructive, thus
* subsequent calls will return subsequent segments until the list is
* empty. This is accomplished by first copying the contents of the
* head record into a temporary record called segstruct and then
* freeing the allocated memory for the head record. The pointer
* returned is actually a pointer to this temporary storage. If
* get-segment is called on an empty list a null pointer is returned.
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LINESEG *
get-segment(n)

int n;

LINESEG *put,
int index;

index = segjlist-head[n];
if (index =- -1)

ptr = NULL;
else (

ptr = &seg-list[n] [index];
seg.listjhead[n] = (index < 4) ? (index + 1): 0;

return ptr,

"• Procedure: endsegment(n)
"• Description: this procedure allocates
"* memory for the segment data structure, loads the correct values
"* into it and returns a pointer to the structure.

LINE_SEG *

end-segment(n)
int n;

{
LINE_SEG *seg.ptr;
double starx, starty, endx, endy, delta, alpha, r, length;

seg..ptr = &segstruct;

startx = segment-data[n].startx;
starty = segmentdata[n].starty;
endx = segment-data[n].endx;
endy = segment-data[n]i.endy;
alpha = segmentjdata[n].alpha;
r = segmenLdata[n].r,
delta = startx * cos(alpha) + starty * sin(alpha) - r,
startx = startx - (delta * cos(alpha));
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starty = starty - (delta * uin(alpha));
delta = endx * cos(alpha) + endy * sin(alpha) - r,
endx - endx - (delta * cos(alpha));
endy - endy - (delta * sin(alpha));
length = sqrt(SQR(startx - endx) + SQR(starty - endy));

seg..ptr->headx = sum;rtx
seg-ptr->heady = starty;
seg-ptr->tailx = endx;
seg-ptr->tally = endy;
seg-ptr->alpha = alpha;
segptr->r = r,
seg.ptr->length = length;
seg-ptr->sonar = n;

return seg.ptr

"* Procedure: get-currenLsegment(n)
"• Description: returns a pointer

"• to the segment currently under construction if there is one,
"• otherwise returns null pointer. This is accomplished by calling
"• end-segment, copying the data into segstruct and then returning a
"• pointer to segstruct. The memory allocated by end-segment is then
"* freed.

LINESEG *

geLcurrent-segment(n)
int n;

4
LINESEG *ptr,

ptr = endsegment(n);
return ptr,

* Procedure: calculate-global(n)
* Description: this procedure
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* calculates the global x and y coordinates for the range value and
* robot configuration in the sonar table. The results are stored in
* the sonar table.

void
calculate-global(n)

int n;
(

double Ix, ly, It, range, robjt, rob..x, rob.y;
CONFIGURATION global;
range = sonartable[n].d;
if (range >= INFIN1TYO) 4

sonar_table[nJ.gx = RINI ;
sonartable[n].gy = INFINITY;

}elseI

rob.x = sonartable[nJ.rob.x;
rob4y = sonartable[nJ.rob.y;
rob_t = sonartable[n].robjt;

getrobO(&global);

/* vehicle compose sonar */
Ix = global. x + (cos(global.t) *rob x) - (rob4y * sin(global.t));
ly = global. y + (sin(global.t) *robx) + (roby * cos(global.t));
It = rob-j + global.t;

to vehicle compose sonar range */
sonar-table[n].gx = Ix + (cos(It) * range);
sonartable[n].gy = ly + (sin(It) * range);

"* Procedure: addjto.segment(n, x, y) * De•-uiption: this procedure
"* calculates new interim data for the line segment and stores it in
"* segmenLdata[n]. It also changes the end point values to the point

"* being added.

void
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add&to-segmet(n, x, y)
int n;
double x, y;

{
double mOO, mlO, mOl, m2O, ml 1, mO2;
double alpha, r,
double mux, muy, mm2O, mmnI 1, mmO2;

mOO = segnmnt-data[n].mOO += 1.0;
mlO = segment-data[nJ.mlO ,= x;
mOl = segment-data[nJ.mOl += y;
m20 = segmenwtdata[n].m20 += sqr(x);
ml 1 = segment-data[nJ.ml I + x * r,
"m02 = scgment_data[n].m02 += sqr(y);

if (mOO < 1.5) {
segnent-data[n].startx - x;
segment-data[n].starty = r,

}
mux = mO/ mOO;
muy = mOl /mOO;
mam2O = m20 - sqr(mlO) / mOO;
mml I = ml 1 - mlO * mOi / mOO;
am0O2 = m02 - sqr(mO 1) / mOO;

if (mOO > 1.5) 4
alpha = atan2(-2.0 * nn 11, (rmm2 - mrm2O)) / 2.0;
r = mux * cos(alpha) + muy * sin(alpha);

segment_data[n].alpha = alpha;
segnwnt-data[nj.r -
segnwnt_data[n]..--o x;
segmenLdata[nj.eniy =y;

• Procedure: reset_moments(n);
* Description: resets the accumulative
• values in segmentdata[n]J/* (mOO,mlO,mO0,m20,ml l,m02) to zero.
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void
resetjmoments(n)

int n;
(

segnznt-data[n.mO0 - 0.0;
segment-datan].mlO 0.0,
segment-data[nI.mO - 0.0,
segment-data[in.m20 -0.0,
segment-datafn].ml I- 0.0.
segment_data[n].m02 0.0;

* Procedure: generate-segment(n)
* Description: this function
* completes segments at the end of a data run. Necessary because the
* linear fitting function only terminates a segment based on the data
* - it has no way of knowing that the user has stopped collecting data.

void
generate-segment(n)

int n;

LINESEG *seg..ptr;
if (segment_data[n].m0 > 10.0) {

seg..ptr = endsegment(n);
buildlist(seg-ptr, n);

I
reset-moments(n);

* Procedure: linearjitting(n)
* Revised by Y. Kanayama,07-07-93
* Description: this procedure controls the fitting of point
* data to straight line segments. First it tests if the new coming
*point is not far from the fitted line. If the test is passed, the
*point is added to test if the thinnes test is passed. If it is
* passed, the addition is finalized. If any of the tests fail,
* the line segment is ended and a new one started. The completed line
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* segment is stored in a data structure called segment, and segments
* are linked together in a linked list.

void
linearfitting(n)

int n;

double x, y, mOO;
double alpha, r, delta;
double sonarrange;
LINE_SEG *finished.segment;
sonar-range = sonar-table[nh.d;

if (sonar_range < 9.3 11 sonar_range > 409.0) {
generate-segment(n);
return;

}
x = sonartable[nJ.gx;/* temporary moments */
y - sonartable[nJ.gy;
mOO = segment-data[n].mOO;

if (mOO < 1.5) I
addcjoosegment(n, x, y);
return;

}
r = segmentjdata[hn.r,
alpha = segmentelata[nJ.alpha;
delta - fabs(r - x * cos(alpha) - y * sin(alpha));

if (delta > max2(C2, CI * sonar-range)) 4
generate segment(n);
add-to.segment(n, x, y);
return;

}else(
addjto-segment(n, x, y);
return;

}

/* end linearfitting */
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* Procedure: buildjiist(ptr, n);
* Description: this function accepts
* a pointer to a segment data structure and a sonar number, and
* appends the segment structure to the tail of a linked list of
* structures for that sonar.

void
buildlist(ptr, n)

int n;
LJNESEG *ptr

I
int next;

if (seg_list_%til[n] - -1)
seg listhheadr[aj = 0;

next = (seg..list_ail[n] < 4) ? ++segist_tail[n] :0;
if (next - seg.list-head[n])

seglistjhead[n] = (seLglist-head[n] < 4) ? ++seglist-head[n] :0;
seglist[n][next) = *ptr;
if (sonarjable[n].filetype[2 =- 1)

logdata(n, 3, sonarjtable[nJ.filenumber[2], next);
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/,
Author Patrick Byrne
Date February 22, 1994
File : sonario.h
Description : Provides extern declarations for functions in sonario.c
*/

extern void xferjraw-to-hostO;
extern void xfer-global-to.hostO;
extern void xfer..segmentto-hostO;
extern void host.xferO;

/,
"* Author Patrick Byrne
"* Date :22 February 1994
"* File
"* sonario.c
"* Description : Provides the following functions for sonar io:
"* hostxfero xfer.segment-tohostO xferjawtojhostO xfer-globaltohostO

#include "mnml.h"

#ifndef SIM

"* Procedure: xfer_raw_to-host(f'denumberfilename)
"* Description:
"* this function allocates memory for a buffer and then converts a raw data
"* log file to a string format stored in the buffer. It then calls host_xfer
"* to send the string to the host. When that transfer is complete, it
"* frees the memory it allocated for the buffer. Filename must be
"* entered in double quotes ( "dumpraw" for example).

void
xfer-rawto.host(filenumber, filename)

int filenumber;
char *filename;

(
char *rbuffer,
char *start;
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int i,c,j;

i rawdatalog[filenumber].next;
c -20 + (i * 33);
rbuffer = nmalloc(c);
start - rbuffe,
for (j = 0; j < i; j++) I

printflex(raw-data-log[filenumber].darraybl, rbuffer);
print-flex(rawjdataJog[filenumber].xarray[j], rbuffer);
print-flex(raw.data-log[filenumber].yarrayWjJ, rbuffer);
print_ flex(rawjdata jog[filenumber .tarrayU], rbuffer);
nl-flex(rbuffer);

}
putb(O'V, rbuffer);
rbuffer = start;
host.xfer(rbuffer, filename);
free(rbuffer);

II

"* Procedure: xferglobal_to_host(filenumberfilename) Description:
"• this function performs the same function as xfer.rawjo.host, but for
"* global data vice raw data.

void
xfer-global-tojhost(filenumber, filename)

int filenumber,
char *filename;

char *gbuffer;
char *start;
int i, c, j;

i = global-datajlog[filenumber].next;
c =20 + (i * 17);

/*c = 20 + (i * 22);*/
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gbuffer = malloc(c);

start = gbuffer;
for (j - 0; j < i; j++) {

print-flex(global-dataJog[filenumberJ.xarray[j], gbuffer);
printflex(global-datalog[filenumberJ.yarrayUj], gbuffer);
nl_fiex(gbuffer);

)
putb('O', gbuffer);
gbuffer = start;
hostcxfer(gbuffer, filename);
free(gbuffer);

)

"* Procedure: xfersegment to_host(filenumber,filename)
"* Description:
"* this function performs the same function as xfer_rawJojhost, but for
* segment data vice raw data.

void
xfer_segmenLto.host(filenumber, filename)

int filenumber,
char *filename;

I
char *segbuffer,
char *start;
int i,c,j;

i = segment_datajog[filenumber].count;
/* c = 20 + (i * 77); *1
c = 20 + (i * 85);
segbuffer = malloc(c);
start = segbuffer;
for (j = 0; j < i; j++) {

print~flex(segmenLdatajog[filenumber].arraylj].headx, segbuffer);
print-flex(segmenLtdatajog[f'lenumber].arrayJ].heady, segbuffer);
niflex(segbuffer);
prinL.flex(segment-datajlog[f'lenumber].arrayb].tailx, segbuffer);
print~flex(segmenLdata_log[filenumber].arrayJ].taily, segbuffer);
nl-flex(segbuffer);
nlflex(segbuffer);
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puth(VO', segbuffer);
segbuffer = start;
hosLxfer(segbuffer, filename);
free(segbuffer);

"* Procedure: hostjfer(buffer~filename)
"* Description: this function
"* transfers a data string from the buffer to the host. Not a user
"* function; is called by data conversion functions such as xferraw_tobost.
"* User would call the xferraw-tobhost (or equivalent for global or
"* segment data) to download data from the robot.

void
host.xfer(buffer, filename,

char *buffer,
char *ilename;

*_port(HOST, PORTSPEED, 0, 0, 0);
r_printfC('\2\5 connect cable and keyinV'\'"');
while (rgetchar0 !=' ');
putstr("•n", HOST);
iport(HOST, PORTSPEED, 0, 0, 1);
r-prinff(lM2\15 ready for dump ");
while (r.getchar0 != 'g');
putsbr("ytof ", HOST);
putstr(filename, HOST);
putstr(" w Nn", HOST);
while (rgetchar0 !=' ');

r..printfC'dumping ");
putstr(buffer, HOST);
putbC(4', HOST);
putb(M4', HOST);
r_.printf("•TAT");

return;

#endif
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/* Includes from sonar sub-modules */
#include "sonarmath.h"
#include "sonarcard.h"
#include "sonario.h"
#include "sonarlog.h"

/*declaration of functions and return values for sonarsys.c*/

extern void setsonar..parametersO;
extern void build-listO;
extern CONFIGURATION get-sonar-configo;

#include "mrnl.h"
#ifdef SIM
#include "/n/gemini/work2/yamabico/mml/Sim/spatial.h"
#endif

"* Procedure: set.sonarparameters(cl,c2)
"* Description: allows the user to
"* adjust constants which control the linear fitting algorithm. C1 is
"* a multiplier to allow more lenancy for greater sonar ranges.
"* C2 is an absolute value; both are used to determine if an
"* individual data point is usable for the algorithm. Default values
"* are set in main.c to .02, 5.0 respectively.

void
set_sonarparameters(c 1, c2)

double c1;
double c2;

C1 = cl;
C2 = c2;

FUNCTION: get-sonarsonfig0
PARAMETERS:
PURPOSE:
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RETURNS:
CALLED BY:
CALLS: NONE
COMMENTS: I 1 September 92 - Dave MacPherson

CONFIGURATION
gctsonarsconfig(seg-count)

int segcount;

CONFIGURATION Qsonar;

Qsonar.x = segmentjdata log[O].array[seg-count].tailx;
Qsonar.y = segment-datajlog[OJ.array[seg-sount].taily;
Qsonar.t = atan2(segmentdatalog[O].array[seg-count].heady -

segmentLdatajlog[O].array[seg-count].taily,
segmenLtdatajlog[O].array[seg-count].headx -
segmenLdatajlog[O].array[seg-count].tailx);

Qsonar.k = 0.0;
return Qsonar,
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/.
Author Patrick Byrne
Date : 22 Feburary 1994
File sonarlog.h
Description: Provides extern declarations for functions in sonarLog.c
,/

extern void enable_data_logging();

extern void disabledatajloggingO;
extern log._dataO;
extern void setIog.interval0;

/*
"* Author : Patrick Byrne
"* Date : 22 February 1994
"* File :sonarlog.c
"* Description : Provides the following Sonar Logging
"* functions:

"* void enabledatajloggingo; void disabledataloggingO; void log-datao;
"* void set_logintervalO;

#include "mml.h"

/

"* Procedure: enabledatajlogging(n,filetype,filenumber)
"* Description: causes the background system to log data for sonar (n)
"* to a file (filenumber). The dita to be logged is specified by an
"* integer flag (filetype). A value of 0 for filetype will cause raw
"* sonar data to be saved, 1 will save global x and y, and 2 will save
"* line segments. The filenumber may range between 0 and 3 for each of
"* the three types, providing up to 12 data files. Example:
"* enabledatajogging(4,0,0); will cause raw data from sonar #4 to be
"* saved to file 0, while: enabledata-jogging(7,2,O);
"* will cause segments for sonar #7 to be saved to file 0. Function
"* increments the service_flag.
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void
enable_daamjogging(n, filetype, filenumber)

int n, filetype, filenumber;

global.data_log[filenumber].next = 0;
if (filetype - 1)

sonar_table[n].global = 1;
sonar-table[n].f'letype[fi'etypeJ = 1;
sonarjtable[n].f'denumber[f'letype] = filenumber,
++serviceflag;

"* Procedure: disabledatalogging(n,filetype)
"* Description: causes the background system to cease logging data of a
"* given filetype for
* a sonar n. Decrements the servicelag.

void
disable.datajlogging(n, filetype)

int n, filetype;

if ((filetype = 1) && (sonar-table[n].fitting = 0))
sonar_table[n].global = 0;

sonar-table[n].f'detype[filetype] = 0;
--serviceflag;

* Procedure: log..data(n, type, filenumberi)
* Description: this
* procedure causes data to be written to a file. The filenumber
* designates which "column" (0,1,2, or 3) of a two dimensional array for
* that type of data is used. The data array and a counter for each column
* forms the data structure for each type. The value of i is used to index
* the seglist array for storing line segments.

logdata(n, filetype, filenumber, i)
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int n, filetype, filenumber, i;

int count, interval, next;

switch (filetype) I
case 1:

count = raw-datajlog[fdenumberl.count;
interval = sonar-table[n].interval;
if ((count < MAXRAW) && !(count % interval)) I

next = raw_dataJog[filenumberJ.next;
raw_data_log[filenumber].darray[next] - sonar-table[nl.d;
raw-data-log[filenumber].xarray[next] = sonar-table[n].x;
raw-data-log[filenumber].yarray[next] = sonar-table[nl.y;
rawdatajlog[filenumber].tarray[nextJ = sonar-table[n].t;
rawdatajlog[filenumberj.next += 1;

}
rawjdata Iog[filenumber].count += 1;
break;

case 2:
if (sonar-table[n].gx --= INFIN1TY)(

next = globaLdatajog[filenumber].next;
if (globaldataJog[filenumber].xarray[next-lJ < 9999)1

count = global-datajog[filenumber].count;
interval = sonartable[nJ.interval;
if ((count < MAXGLOBAL) && !(count % interval)) {

next = global-dataJog[filenumber].next;
global-datajlog[filenumberJ.xarray[nextJ=

INFINHY;
global-datajog[filenumber].yarray[next]=

INFINITY;

global-dataJog[filenumber].next += 1;
}
global-datajog[filenumberJ.count +- 1;

else(
count = global-dataJog[filenumber].count;
interval = sonartable[nJ.interval;
if ((count < MAXGLOBAL) && !(count % interval)) 4

next = global-data-log[filenumber].next;
globaldatalog[filenumber].xarray[nextJ=

sonartable[nJ.gx;
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global datalog[filenumberJ.yarray[nextj=
sonar-table[n].gy;

global data Jog[filenumberJ.next +- 1;
}
globaLdatajog[filenumber].count += 1;

}
break;

case 3:
count = segment-datajog[filenumber].count;
if (count < MAXSEGMENT) I

segment-data-.og[filenumberJ.array[count] = seg.list[n][i];
#ifdef SIM

printf("*A'valogging segment data count => %d sonar => %d ",

count, n);
printf("%nThe Line segment is:

%s%5. lf%s%5. lf%s%5. lf%s%5. lfn%s%5. lf%s%5. Itn",
"headx = "

segment-datajog[f'denumber].array[count].headx,
"heady =

segment datalog[fidenumber].array[count].heady,
" tafix ="

segment data Iog[f'denumberj.array[countj.tailx,
" taily = ",

segment datalaog[filenumberJ.array[countJ.taily,
" length = ",

segment.datajog[f'denumber].array[count].length/*

"6 Phi ",

segment datalog[filenumberj.array[countJ.phi*/);
#endif

segment-datagog~filenumber].count += 1;
break;

}
}

* Procedure: setJog.interval(n,d)
* Description: this procedure
* allows the user to set how often the sonar system writes data to
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* the raw data or global data files. The interval d is stored at
* sonarjtable[nl, and one data point will be recorded for every d data
* points sensed by the sonar. Default value for interval d is 13, which for
* a speed of 30 cm/sec and sonar sampling time of 25 msec should
* record a data point every 10 cm.

void
set_log.interval(n, d)

int n, d;
{

sonar_table[n].interval = d;
}
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B. USER FILES

#include "mml.h"
user()
4
/* File for uranslation scanning of sonar 4*1
/* Uses logging functions for local trace, */
/* segment sonar data, and global sonar data*/
/* Pat Byrne 11Nov93
/*Case 1*/

CONFIGURATION first, second;
double s;
defconfiguration(1500.0, 146.0, PI, 0.0, &first);
defconfiguration(800.0, 0.0, HPI, 0.0, &second);
s = 20.0;
speed(15.0);

bufferloc = indexloc = malloc(300000);
bufloc f indxloc = (double *) malloc(60000);
loc_tron(2, Ox3f, 30);
set_rob(&first);
enable-sonar(RIGHTF);
size.const(s);
setloginterval(RIGHTF, 1);
enable_linearfitting(RIGHTF);
enabledata.logging(RIGHTF, 1, 0);
enablejdataJogging(RIGHTF, 2, 0);
enable-display-statuso;
line(&first);
bline(&second);
while(vehicle.x > 1300.0);
disablesonar(RIGHTF);
disablelinearfitting(RIGHTF);
disablekdatajogging(RIGHTF, 2);
disable-dataJogging(RIGHTF, 1);
loc_troffO;
motor-on = NO;
xfer-global-to..ost(0, "global7.test");
xfersegmenuto.host(0, "segment7.test");
loc-trdumpC'loc-dump.test");
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#include "ruml.h"
usero
I
/* File for translation scanning of sonar 7 *1
/* Uses logging functions for local Urace, */
/* segment sonar data, and global sonar data*/
/* Pat Byrne 31 Jan 93 *
/* Case 2*?

CONFIGURATION first, second, thirdfourthjlfth,sixth;
double s;
defconfiguration(O.0, 0.0, 0.0, 0.0, &first);
def_configuration(100.0, 300.0, HPI, 0.0, &second);
s = 20.0;
speed(15.0);
bufferoc = indexloc = malloc(300000);
bufloc = indxloc = (double *) malloc(60000);
loc-tron(2, Ox3f, 30);
setrob(&frst);
enable-sonar(RIGHIT);
size-const(s);
setloginterval(RIGHTF, 1);
enablejlinearfitting(RIGHTF);
enabledatalogging(RIGHTF, 1, 0);
enabledatalogging(RIGHTF, 2, 0);
enabledisplaystatuso;
line(&frst);
line(&second);
while(vehicle.y < 150.0);
disable_sonar(RIGHTF);
disablejinear-fitting(RIGHTF);
disabledataIogging(RIGHTF, 2);
disablejdatajogging(RIGHTF, 1);
loctroffO;
motor_on = NO;
xfer-globaLto-host(0, "global7.test");
xfer_segmentto_host(0, "segmen.test");
loc-trdump("loc-dump.test");
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include "mml.h"

/1 File for ranslation scanning of sonar 7 "I
/* Uses logging functions for local trace, *1
/ segment sonar data, and global sonar data*/
/* Pat Byrne 11Nov93
/* Case 3*/

CONFIGURATION first, second, thirdfourth,fifth,sixth;
double s;
def_configuration(951.6, -50.0, HPI, 0.0, &first);
def-configuration(951.6, -30.0, HP112, 0.0, &second);
s = 20.0;
speed(15.O);
buffrjloc = indexlbc f malloc(300000);
bufloc = indxloc = (double *) malloc(60000);
foctron(2, Ox3f, 30);
set-rob(&frst);
enableksonar(RIGHTF);
size-const(s);
set_logjnterval(RIGHTF, 1);
enable_linear_fitting(RIGHTF);
enabledatajogging(RIGHTF, 1, 0);
enabledataJogging(RIGHTF, 2, 0);
enablejdisplay-statuso;
line(&fst);
line(&second);
while(vehicle.x < 1150.0);
disable sonar(RIGHTP);
disablelinear_fitting(UGHTF);
disabledata-Jogging(RIGHTF, 2);
disabledataiJogging(RIGHTF, 1);
locjtroffO;
motoron = NO;,
xfer-global to_host(O, "global7.test");
xfer.segmenLto..host(O, "segment7.test");
loc_trdumpC'"oc dump.testW);
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/* File for rotational scanning of sonar 3 */
/* Pat Byrne Nov30, 93
/* Case 4
#include "mml.h"user0

CONFIGURATION pl;
void initafi*);
void cleanupO;
def_configuration(1200.0, 146.0, 0.0, 0.0, &pl);
speed(15.0);
inidzaze(pl);
set-rob(&pl);
rotate(DPI);
while(vehicle.t < PI);
cleanupo;

}
void initialize(p 1)
{
double s = 20.0;
bufferjoc = indexoc = malloc(300000);
bufloc = indxloc = (double *) malloc(60000);
locJron(2, Ox3f, 30);
setjrob(&p 1);
enable-sonar(FRONTR);
speed(15.0);
size._const(s);
set-loginterval(FRONTR, 1);
enable-linearfitting(FRONTR);
enabledatajlogging(FRONTR, 1, 0);
enable.datajogging(FRONTR, 2, 0);

)
void cleanup()
{

disablesonar(FRONTR);
generate.segment(FRONTR);
disabledatalogging(FRONTR, 2);
locjtroff0;
motor-on = NO;

xferglobal_to..host(0, "global.test");
xfersegmentjto_host(0, "segment3.test");
loc-trdumpC'locdump.test");

I
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/* File for rotational scanning of sonar 3*
/0 Pat Byrne Nov30, 93

include "mmLh"
/* Case5 *5
user()
{
CONFIGURATION pl;
void initializcO;
void cleanupO;
defconfiguration(951.6, -504.5, 0.0, 0.0, &pl);
speed(15.0);
initialze(pl);
set-rob(&pl);
rotate(DPI);
while(vehicle.t < PI);
cleanup(;

)
void initialize(pl)
(
double s = 20.0;
buffer-loc = indexloc = malloc(300000);
bufloc = indxloc = (double *) malloc(60000);
loc_tron(2, 0x3f, 30);
setrob(&pl);
enable.sonar(FRONTR);
speed(15.0);
sizeconst(s);
set-loginterval(FRONTI, 1);
enable_linearfitting(FRONTR);
enablejdatajogging(FRONR, 1, 0);
enabledata-Jogging(FRONTR, 2, 0);

I
void cleanupO
(

disable.sonar(FRONTR);
generate.segment(FRONTR);
disable.datajogging(FRONTR, 2);
loc_troffO;
motoron = NO;

xfer-global-to.host(0. "global.est");
xfer-segmenztto.host(0, "segment3.test");
loc_trdumpC"loc-dump.test');
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/* File for rotational scanning of sonar 3*/
/* Pat Byrne Nov30, 93 */
/* Case6 *6
#include "mml.h"
user()
l

CONFIGURATION pl;
void initializeo;
void cleanupo;
def-configuration(78 1.0, 100.00, PI, 0.0, &pl);
speed(15.0);
initialize(p1);
setrob(&pl);
rotate(PI);
while(vehicle.t < DPI);
cleanupo;

}
void initialize(p 1)

{
double s = 20.0;
bufferloc = indexloc =malloc(300000);
bufloc = indxloc = (double *) malloc(60000);
locjtron(2, Ox3f, 30);
set-rob(&pl);
enablesonar(FRONTR);
speed(15.0);
sizesconst(s);
set-Jog-interval(FRONTR, 1);
enable_linearjitting(FRONTR);
enable_datajogging(FRONTR, 1, 0);
enable.datajogging(FRONTR, 2, 0);

)
void cleanupO
{
disable.sonar(FRONTR);
generate-segment(FRONTR);
disable_data-Jogging(FRONTR, 2);
locjtroffo;
motoron = NO;
xferglobaLto..host(0, "global.test");
xfer.segment-to.host(0, "segment3,test");
loctrdump("loc dump.test");
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#include "mml.h"

userO
(
/* File for translation scanning of sonar 7 /
/* Uses logging functions for local trace, *1
/* segment sonar data, and global sonar data*/
/* Pat Byrne 1Feb94 */
/* Case7 *7

CONFIGURATION first, second;
double s;
def-configuration(0.0, 0.0, 0.0, 0.0, &first);
def_configuration(800.0, 0.0, HPI, 0.0, &second);
s = 20.0;
speed(15.0);
bufferoc = indexloc = malloc(300000);
bufloc = indxloc = (double *) malloc(60000);
loc-tron(2, 0x3f, 30);
seLrob(&first);
enable-sonar(RIGHTF);
size.const(s);
setjoginterval(RIGHTF, 1);
enable_linear fitting(RIGHTF);
enablejdatalogging(RIGHTF, 1, 0);
enablejdatalogging(RIGHTF, 2, 0);
enabledisplay_.statuso;
line(&first);
bline(&second);
while(vehicle.x < 300.0);
disable.sonar(RIGHTF);
disable-linear-fitting(RIGHTF);
disabledata_logging(RIGHTF, 2);
disable_data_logging(RIGHTF, 1);
loc_troffO;
motoron = NO;
xfer-global-tohost(0, "global7.test");
xfersegment-to.host(0, "segment7.test");
loc_trdumpC'locdump.test");

I
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#include "mml.h"
userO
{
/* File for rotational scanning of sonar 3*/
/* Uses logging functions for local trace, */
/* segment sonar data, and global sonar data*/
/* Pat Byrne I INov93
/* case8 *8

CONFIGURATION first, second;
double s;
deLconfiguration(1500.0, 146.0, PI, 0.0, &first);
def-configuration(800.0, 0.0, HPI, 0.0, &second);
s = 20.0;
speed(15.0);
bufferIoc = indexIoc = malloc(300000);
bufloc = indxloc = (double *) malloc(60000);
loc_tron(2, 0x3f, 30);
setjob(Mirst);
enable.sonar(RIGHTF);
size-const(s);
setjogjnterval(RIGHTT, 1);
enablelinearjfitting(RIGHTF);
enabledatajogging(RIGHTF, 1, 0);
enabledatajogging(RIGHTF, 2, 0);

enablejdisplay-statusO;
line(&fMrst);
bline(&second);
while(vehicle.x > 1300.0);
disablesonar(RIGHTF);
disablejlinearjfiuing(RIGHTF);
disabledataJogging(RIGHTF, 2);
disabledataJogging(RIGHTF, 1);
loctroff0;
motor-on = NO;
xfer-.globaLto.host(0, "global7.test");
xfer.segment-to_host(O, "segment7.test");
loc-trdumpC'loc~dump.test");
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,include "mml.h"
/ obstacle example one /

double hitl 1;
CONFIGURATION p1, p3, positl;
def configuration(1051.0, 146.0, 0.0, 0.0, &pl);
def.configuration(1651.0,46.0,0.0,0.0, &p3);
speed(15.0);
buffer-loc - index-Joc = malloc(300000);
bufloc = indxloc = (double *) malloc(60000);
loc-tron(2, Ox3f, 30);

setrob(&p•l);
enable-sonar(FRONTR);
set-loginterval(FRONTR, 1);
enabledata-logging(FRONTR, 1, 0);
hitl I - sonar(FRONTR);

Wine(&pl);
while(hitl I >'- 100.0 11 hitl 1 - 0.0 ){

hitl I = sonar(FRONTR);
I

skipO;
line(&p3);
gat-robO(&posit 1);
while(positl.x < 1351)H
getrob0(&positl);
)
skipO;
line(&pl);

get.robO(&posit 1);
while (positl.x < 1651)(
get.rob0(&Positl);
I
disable.sonar(FRONTR);
disabledata_logging(FRONTR, 1);
loctroffo;
stop0o;
motoron = OFF;
xfer.global-tohost(O, "global7.AVOID");
locjtrdumpC'locjdump.AVOID");
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include "mml.h"
/* example of obstacle avoidance 2*/
userO
{

double hit 11;
CONFIGURATION pl, p3, p4 , start, positl;
def-configuration(0.0,0.0,0.0,0.0, &start);
def_€onfiguration(600.O, 0.0, 0.0, 0.0, &pl);
def-configuration(O.0, -100.0, 0.0, 0.0, &p3 );
speed(15.0);
bufferfloc = index-loc = malloc(300000);
bufloc = indxloc = (double *) nalloc(60000);
loc-tron(2, Ox3f, 30);
setrob(&start),

enablesonar(FRONTR);
enablesonar(LEFrF);
hitl I = sonar(FRONTR);

line(&pl);
hitl I = 9999.0;
while (hitl I >= 100.0 11 hitl 1 - 0.0) {

hitl I = sonar(FRONTR);
)
skipo;
line(&p3);
hitl 1 = sonar(LEFTF);
while (hitl I >= 100.0 11 hitl 1 = 0.0)4

hitl I = sonar(LFTIF);

while (hitl I <= 100.0 11 hitl I - 0.0)4
hitl 1 = sonar(LEFlF;

I
skip();

line(&pl);
get-robO(&positl);
while(positl.x < 600.0)f

get-rob0(&posit 1);

disable.sonar(FRONTR);
disable.sonar(LEF );
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locjtroffO;,
MtPOO;.

rmtor-on - OFF;
loc-trdumpC(locdunp.AVOID");
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